Intelligent Prediction And analysis of the Lateral Velocity and Mixing Characteristics Downstream of the Spacer Grid
编号:103 访问权限:公开 更新:2024-09-22 12:54:32 浏览:91次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

摘要
This paper obtains downstream flow field data under the positioning grid through experiments and simulations. The mixing factor evaluation system is used to calculate the mixing factor parameters, and a database of mixing characteristics is built. Additionally, we use two neural network architectures, Multilayer Perceptron (MLP) and Kolmogorov–Arnold Networks (KAN) to predict the mixing characteristic parameters. For the MLP model, by cross-validating activation functions, optimization functions, and optimizing parameters such as regularization coefficients and learning rates, the vortex factor determination coefficient reached 0.97, and the turbulence intensity determination coefficient reached 0.93, showing excellent performance. For the KAN model, through pruning and optimizing the model structure, the vortex factor determination coefficient reached 0.89, and the turbulence intensity determination coefficient reached 0.96.
For the MLP model, the SHapley Additive exPlanations(SHAP) method was used for model interpretability analysis, providing an intuitive understanding of how each feature affects different mixing characteristic parameters. For the KAN model, by analyzing the pruned network structure, the relationship between input features and mixing characteristic parameters can be clearly analyzed. Moreover, symbolic representation can output accurate mixing characteristic parameter equations, allowing for a quantifiable analysis of hidden data relationships.
 
关键词
Spacer grid; mixing vane; KAN; MLP; SHAP
报告人
quanbo li
Harbin Engineering University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月23日

    2024

    09月25日

    2024

  • 09月24日 2024

    报告提交截止日期

  • 09月25日 2024

    注册截止日期

主办单位
Harbin Engineering University (HEU)
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询