A Deep Potential model for Sn with ab initio accuracy intended for shock simulation
编号:260 访问权限:仅限参会人 更新:2024-04-26 00:14:49 浏览:145次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Sn is commonly used in shock simulations to study the behaviour of metals under shock loading. However, there has been a tough problem of the complex phase transitions of Sn under high pressure. Current empirical potentials for Sn can not accurately describe the phase transitions of Sn. For instance, the embedded atom method (EAM) model by F. Sapozhnikov et al. [1] is fitted to bct and bcc phases at high pressure, but fails to describe phase at lower pressure. The modified embedded atom method (MEAM) model parameterized by Ravelo and Baskes et al.[2] are mostly fitted to low pressure phases of  and β, but cannot ensure accuracy on bct and bcc states. On the other hand,  ab initio methods such as density functional theory (DFT) can describe phase transitions under static states, but are too expensive to be applied to shock simulations.  Deep Potential (DP) method points out a new solution to the trade-off between accuracy and efficiency with the assistance of machine learning. We construct a DP model for Sn intended for shock simulation by training the data labeled with DFT calculations with SCAN exchange-correlation functional. The data covers a range of 0 - 100 GPa and 0 - 5000 K, including the common phases of Sn under both low and high pressure. To better describe dissociation from the surface, structures with a vacancy layer are also added into training data. Examinations show that our DP model can reproduce both the static properties of DFT calculation and the dynamic behaviour in experiments including Hugoniot curve and high pressure melting points, indicating it a promising trial to introduce ab initio accuracy into shock simulations.

References
[1]  F. Sapozhnikov, G. Ionov, V. Dremov, L. Soulard, and O. Durand, J. Phys.: Conf. Ser. 500, 032017 (2014).
[2]  R. Ravelo and M. Baskes, Equilibrium and thermodynamic properties of grey, white, and liquid tin, Phys. Rev. Lett. 79, 2482 (1997).
 
关键词
tin,deep learning,density functional theory,meta-GGA,high temperature and high pressure,molecular dynamics
报告人
亦欣 陈
北京大学应用物理与技术研究中心

稿件作者
亦欣 陈 北京大学应用物理与技术研究中心
啸洋 王 北京应用物理与计算数学研究所
涛 陈 北京大学应用物理与技术研究中心
奉博 袁 北京大学应用物理与技术研究中心
旺辉 李 新加坡科技研究局
涵 王 北京应用物理与计算数学研究所
默涵 陈 北京大学应用物理与技术研究中心
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月13日

    2024

    05月17日

    2024

  • 03月31日 2024

    注册截止日期

  • 04月15日 2024

    摘要截稿日期

主办单位
冲击波物理与爆轰物理全国重点实验室
浙江大学物理学院
中国核学会脉冲功率技术及其应用分会
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询