Micro-mechanical properties study of high pressure synthesized substances
编号:235 访问权限:仅限参会人 更新:2024-04-25 23:04:21 浏览:190次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Micro-mechanical properties study of high pressure synthesized substances

Tao Liang 1,*
  1. Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
Abstract
      Mechanical properties characterization is essential for the potential exploration and structural research of high-pressure synthesized substances. In addition to determining the fundamental mechanical parameters through characterization, understanding the microscopic mechanical mechanisms during deformation could also help for describing the structural characteristics.[1] Exceptional mechanical properties optimized by high-pressure treatment, such as ultra-high hardness, modulus, strength, and toughness, have been always attracting extensive interest in the fields of high pressure physics and materials research.[2-4]
      In the presentation, I will introduce some experimental mechanical and structural researches of high-pressure synthesized samples by using micro-mechanical measurement systems, such as nano-indentation and in-situ SEM micro-pillar compression:
     Continues stiffness measurement (CSM) indenting is used for the mechanical properties measurement of hexagonal silicon (Si-IV, also known as lonsdaleite or wurtzite Si), which phase has attracted considerable research interest due to its extraordinary optical properties and possibility to convert into a direct semiconductor under strain with great potential for applications. The investigation results indicate that the elastic moduli and hardness of Si-IV are close to those of the common diamond cubic silicon.[5]
     Additionally, the energy-tuned La-based MGs are also compared which subjected to annealing, thermal cycling, and high pressure torsion (HPT) treatment in terms of their yield load heterogeneity by using spherical indenter tip mapping. And some in-situ SEM micro-pillar compression studies will also be introduced which are about the gradient structural and mechanical transitions induced by HPT in a high entropy alloy (HEA).

References
[1] H.-K. Mao, B. Chen, J. Chen, K. Li, J.-F. Lin, W. Yang, H. Zheng, Recent advances in high-pressure science and technology, Matter and Radiation at Extremes 2016, 1, 59-75.
[2] Y. Lin, L. Zhang, H.-k. Mao, P. Chow, Y. Xiao, M. Baldini, J. Shu, W.L. Mao, Amorphous Diamond: A High-Pressure Superhard Carbon Allotrope, Physical Review Letters 2011, 107, 175504.
[3] Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, Y. Tian, Nanotwinned diamond with unprecedented hardness and stability, Nature 2014, 510, 250-253.
[4] H. Tang, Y. Cheng, X. Yuan, K. Zhang, A. Kurnosov, Z. Chen, W. Xiao, H.S. Jeppesen, M. Etter, T. Liang, Z. Zeng, F. Wang, H. Fei, L. Wang, S. Han, M.-S. Wang, G. Chen, H. Sheng, T. Katsura, Toughening oxide glasses through paracrystallization, Nature Materials 2023, 22, 1189-1195.
[5] T. Liang, L. Xiong, H. Lou, F. Lan, J. Zhang, Y. Liu, D. Li, Q. Zeng, Z. Zeng, Mechanical properties of hexagonal silicon, Scripta Materialia 2022, 220, 114936.
 
关键词
mechanical property,high pressure,nanoindentation,micro-pillar compression
报告人
Tao Liang
博士后 Center for High Pressure Science & Technology Advanced Research

稿件作者
Tao Liang Center for High Pressure Science & Technology Advanced Research
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月13日

    2024

    05月17日

    2024

  • 03月31日 2024

    注册截止日期

  • 04月15日 2024

    摘要截稿日期

主办单位
冲击波物理与爆轰物理全国重点实验室
浙江大学物理学院
中国核学会脉冲功率技术及其应用分会
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询