Neutron penumbral image reconstruction with a convolution neural network using fast Fourier transform
编号:186 访问权限:仅限参会人 更新:2024-04-23 00:55:22 浏览:162次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
In Inertial Confinement Fusion (ICF), the asymmetry of a hot spot is an important influence factor in implosion performance. Neutron penumbral imaging, which serves as an encoded-aperture imaging technique, is one of the most important diagnostic methods for detecting the shape of a hot spot. The detector image is a uniformly bright range surrounded by a penumbral area, which presents the strength distribution of hot spots. The present diagnostic modality employs an indirect imaging technique, necessitating the reconstruction process to be a pivotal aspect of the imaging protocol. The accuracy of imaging and the applicable range are significantly influenced by the reconstruction algorithm employed. We develop a neural network named Fast Fourier transform Neural Network (FFTNN) to reconstruct two-dimensional neutron emission images from the penumbral area of the detector images. The FFTNN architecture consists of 16 layers that include a FFT layer, convolution layer, fully connected layer, dropout layer, and reshape layer. Due to the limitations in experimental data, we propose a phenomenological method for describing hot spots to generate datasets for training neural networks. The reconstruction performance of the trained FFTNN is better than that of the traditional Wiener filtering and Lucy–Richardson algorithm on the simulated dataset, especially when the noise level is high as indicated by the evaluation metrics, such as mean squared error and structure similar index measure. This proposed neural network provides a new perspective, paving the way for integrating neutron imaging diagnosis into ICF.
关键词
Neutron pebumbral imaging,deep learning,convolutional neural network
报告人
建军 宋
激光聚变研究中心

稿件作者
建军 宋 激光聚变研究中心
王 峰 中国工程物理研究院激光聚变研究中心
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月13日

    2024

    05月17日

    2024

  • 03月31日 2024

    注册截止日期

  • 04月15日 2024

    摘要截稿日期

主办单位
冲击波物理与爆轰物理全国重点实验室
浙江大学物理学院
中国核学会脉冲功率技术及其应用分会
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询