Bridge the gap of fusion yield for different materials by transfer learning
编号:181 访问权限:仅限参会人 更新:2024-04-23 00:51:21 浏览:102次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要

Taking into account the challenges posed by tritium due to its radioactive contamination and cost, we propose designing a simulation program to calibrates the fusion yield between materials by transfer learning. We use the generated DD target data to carry out transfer learning on the initial neural network, so that the initial predictive DT target neural network can calibrate to the DD material. Following this, the same process will be applied to calibrate towards the CD target material, which is typically used in the DCI experiments [1-2]. Although nuclear reactions of these materials have the same theoretical equation of state, the reaction cross-section involves the deposition of different types of particles. Our results show that after transfer learning, the original neural network can effectively predict the pellet productivity of various materials within an accepted error range. However, it should be noted that the increase of surface density and temperature brings about more nonlinear processes in the flow within the target pellet. In our future work, we will leverage experimental data from upcoming Double-cone Ignition experiments to further optimize our deep neural network, consequently enhancing our ability to accurately predict outcomes of future experiments.

关键词
Laser fusion,DCI scheme,Neural network,Transfer learning
报告人
Qianlei Du
博士研究生 Shanghai Jiao Tong University

稿件作者
Qianlei Du Shanghai Jiao Tong University
Fuyuan Wu Shanghai Jiao Tong University
Jie Zhang Shanghai Jiao Tong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月13日

    2024

    05月17日

    2024

  • 03月31日 2024

    注册截止日期

  • 04月15日 2024

    摘要截稿日期

主办单位
冲击波物理与爆轰物理全国重点实验室
浙江大学物理学院
中国核学会脉冲功率技术及其应用分会
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询