报告开始:暂无开始时间(Asia/Shanghai)
报告时间:暂无持续时间
所在会场:[暂无会议] [暂无会议段]
暂无文件
Taking into account the challenges posed by tritium due to its radioactive contamination and cost, we propose designing a simulation program to calibrates the fusion yield between materials by transfer learning. We use the generated DD target data to carry out transfer learning on the initial neural network, so that the initial predictive DT target neural network can calibrate to the DD material. Following this, the same process will be applied to calibrate towards the CD target material, which is typically used in the DCI experiments [1-2]. Although nuclear reactions of these materials have the same theoretical equation of state, the reaction cross-section involves the deposition of different types of particles. Our results show that after transfer learning, the original neural network can effectively predict the pellet productivity of various materials within an accepted error range. However, it should be noted that the increase of surface density and temperature brings about more nonlinear processes in the flow within the target pellet. In our future work, we will leverage experimental data from upcoming Double-cone Ignition experiments to further optimize our deep neural network, consequently enhancing our ability to accurately predict outcomes of future experiments.
05月13日
2024
05月17日
2024
注册截止日期
摘要截稿日期
2025年05月12日 中国 西安市
第八届极端条件下的物质与辐射国际会议2023年06月05日 中国 Zhuhai
第六届极端条件下的物质与辐射国际会议2020年05月25日 中国 Xi'an
第五届极端条件下的物质与辐射国际会议2019年05月29日 中国 Hefei
第四届极端物质与辐射国际会议2017年06月01日 中国 Beijing,China
第二届极端物质与辐射国际会议
发表评论