Biogeomorphological niche of a landform: Machine learning approaches reveal controls on the geographical distribution of Nitraria tangutorum nebkhas
编号:633 访问权限:仅限参会人 更新:2024-04-10 22:12:51 浏览:887次 口头报告

报告开始:2024年05月19日 11:22(Asia/Shanghai)

报告时间:7min

所在会场:[S11] 主题11、地表过程与地貌 [S11-3] 主题11、地表过程与地貌 专题11.3、专题11.4(19日上午,204)

暂无文件

摘要
Nebkhas are distinctive biogeomorphological landforms prevalent in global drylands and coastal environments. They play a crucial role in supporting local biodiversity and preventing land desertification, and often serve as an indicator of local environmental change. Despite their significance, the environmental factors that affect their geographical distribution and how they respond to climate change have not been fully explored. This study represents a novel application of machine-learning models to quantifying the biogeomorphological niche of Nitraria nebkhas in northern China and simulating their geographical distribution under future climate change conditions. Findings underscore that climatic variables influence the growth of formative shrub species on nebkhas, while climate, soil and geomorphological conditions, along with their spatial configuration, determine the probability of nebkha occurrence. Predictions under medium and high greenhouse gas emission scenarios indicate a northward shift in the potential distribution of nebkhas in northern China by the end of the century, accompanied by a decrease in the south due to rising temperatures. Given the potential impact of nebkha field degradation on biodiversity and soil hydrological conditions, adaptive land-use strategies should be designed to protect nebkhas and mitigate the impact of climate change. Our study not only provides valuable insights for informing policy-making and conservation initiatives, but also serves as an example for quantifying the niche of biogeomorphological landforms and simulating their dynamics by integrating machine-learning approaches into empirical geomorphological studies.
关键词
biogeomorphological niche,climate change,machine learning,nebkha,potential distribution
报告人
张昊辰
硕士研究生 南京大学

稿件作者
张昊辰 南京大学
李世寒 南京大学
MasonJoseph A. University of Wisconsin–Madison
YizhaqHezi Ben-Gurion University of the Negev
桂东伟 中国科学院新疆生态与地理研究所
徐志伟 南京大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询