Fast POPs Identification Using No- or Low-Code Machine Learning
编号:4324 访问权限:仅限参会人 更新:2024-04-15 20:39:37 浏览:908次 特邀报告

报告开始:2024年05月19日 08:52(Asia/Shanghai)

报告时间:10min

所在会场:[S5] 主题5、环境科学 [S5-3] 主题5、环境科学 专题5.8、专题5.11(19日上午,307)

暂无文件

摘要
Effectively identifying persistent organic pollutants (POPs) with extensive organic chemical datasets poses a formidable challenge but is of utmost importance. Leveraging machine learning techniques can enhance this process, but previous models often demanded advanced programming skills and high-end computing resources. In this study, we harnessed the simplicity of PyCaret, a Python-based package, to construct machine-learning models for POP screening based on 2D molecular descriptors. We compared the performance of these models against a deep convolutional neural network (DCNN) model. Utilising minimal Python code, we generated several models that exhibited superior or comparable performance to the DCNN. The most outstanding performer, the Light Gradient Boosting Machine (LGBM), achieved an accuracy of 96.20%, an AUC of 97.70%, and an F1 score of 82.58%. This model outshone the DCNN model. Furthermore, it excelled in identifying POPs within the REACH PBT and compiled industrial chemical lists. Our findings highlight the accessibility and simplicity of PyCaret, requiring only a few lines of code, rendering it suitable for non-computing professionals in environmental sciences. The ability of low code machine learning tools (e.g. PyCaret) to facilitate model comparison and interpretation holds promise, encouraging prompt assessment and management of chemical substances.
 
关键词
POPs,machine learning,Risk assessment,QSAR
报告人
陈长二
系主任 华南师范大学

稿件作者
陈长二 华南师范大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询