Moisture-independent prediction method for weather-driven dynamics of soil desiccation cracks: Insights from multi-input long short-term memory neural networks (M-LSTM)
编号:4288 访问权限:仅限参会人 更新:2024-04-15 09:16:03 浏览:844次 口头报告

报告开始:2024年05月20日 10:52(Asia/Shanghai)

报告时间:8min

所在会场:[S3] 主题3、地质灾害与工程地质 [S3-5] 主题3、地质灾害与工程地质 专题3.12、专题3.13、专题3.15(20日上午,308)

暂无文件

摘要
Accurately predicting weather-driven dynamics of soil desiccation cracks is crucial for quantifying the degradation of soil mechanical and hydrological properties, but it remains challenging and unresolved due to the complex dynamic features of desiccation cracks with different climate variables. Existing physical methods often adopted moisture-dependent, single-variable and fixed constitutive functions to describe the crack dynamics, always leading to insufficient prediction results. In this study, a novel moisture-independent deep learning model incorporating different climate variables was proposed to predict the dynamic changes of desiccation cracks by constructing multi-input-output long short-term memory neural networks (M- -LSTM). A soil column test under long-term artificial weather conditions was conducted to obtain temporal changes of climate variables and crack geometric parameters for model training and validation. Then, the performance of M-LSTM was compared with existing empirical, theoretical and numerical models via different criteria, including MSE, MAE, RMSE and R2. The results demonstrate that the proposed M-LSTM effectively captures the dependency between the dynamic changes of desiccation cracks and climate variables, stably and almost perfectly predicting the variations in crack density and width as the climate variables change. For instance, the overall MAE of M-LSTM dropped to 0.03, which is 32.7%, 28.8% and 18.9% away from the prediction results using empirical, theoretical and numerical models, respectively. Our further discussions on the performance of single-input LSTM (without considering climate variables) and single-output M-LSTM (with only one crack geometric parameters being predicted) reveal that reducing input variables only slightly improve the prediction performance. It is still recommended to use M-LSTM to predict weather-driven dynamics of soil desiccation cracks due to its better generalization ability, robustness, practicality and interpretability.
关键词
Desiccation cracks; Weather-driven dynamics; LSTM; Climate variables; Moisture-independent prediction method
报告人
罗易
博士后 中国地质大学(武汉)

稿件作者
罗易 中国地质大学(武汉)
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询