Assessing the potential of multi-source remote sensing data for soil organic matter mapping in hilly and mountainous areas
编号:3298 访问权限:仅限参会人 更新:2024-04-13 11:50:33 浏览:784次 快闪报告

报告开始:2024年05月19日 17:35(Asia/Shanghai)

报告时间:5min

所在会场:[S7] 主题7、遥感与地理信息科学 [S7-7] 主题7、遥感与地理信息科学 专题7.11(19日下午,301)

暂无文件

摘要
Soil organic matter (SOM) is a significant carbon pool on a global scale. Accurately mapping the spatial distribution of the SOM is crucial for achieving the “double carbon target” and promoting sustainable agricultural development. However, the impact of using diverse remote sensing data sources on high-precision SOM mapping in hilly and mountainous areas remains unclear. In this study, the Jiangyou City, located in Sichuan Province, China, was chosen as a typical example of hilly and mountainous regions. We devised 15 distinct feature combinations by utilizing three remote sensing variables (Sentinel-1, Sentinel-2, and Landsat-8) along with DEM data. Next, the Boruta algorithm was employed for feature selection. Finally, the RF, SVR, Cubist, and INLA-SPDE models were adopted to create spatially detailed distribution maps of SOM for the region, and an uncertainty analysis was performed on the SOM mapping results. The results indicate that: (1) the INLA-SPDE model, which integrates both data information and spatial structure, achieves the highest ac-curacy and the less uncertainty in SOM mapping, with an R2 of 0.647 and an RMSE of 4.227 g/kg; (2) optical images are more important than SAR images, but their combination enhances model accuracy. Specifically, Sentinel-2 data significantly influenced SOM prediction in hilly and mountainous areas, followed by Landsat-8 data; (3) the predicted spatial distribution patterns of SOM by the four models are similar, indicating lower SOM content in the southwest, higher SOM content in the central and northeast. This study serves as an important reference for future large-scale and high-spatial SOM prediction and verifies the importance of the spatial resolution to the SOM prediction accuracy in hilly and mountainous regions.
 
关键词
Soil organic matter; Multi-source remote sensing; Hilly and mountainous areas; IN-LA-SPDE
报告人
彭丽
硕士研究生 四川农业大学

稿件作者
彭丽 四川农业大学
吴小波 四川农业大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询