基于机器学习知识提取的渗透率预测模型
编号:2713 访问权限:仅限参会人 更新:2024-04-12 15:59:52 浏览:910次 口头报告

报告开始:2024年05月18日 14:42(Asia/Shanghai)

报告时间:5min

所在会场:[S14] 主题14、水文地球科学 [S14-1] 主题14、水文地球科学 专题14.1、专题14.2、专题14.3(18日下午,B2鹭江厅VIP3)

暂无文件

摘要
孔隙结构的复杂性与非均质性对精确预估渗透率提出了重大的挑战。传统经验公式因忽略了孔隙微观结构与拓扑特性在准确性与适用性方面受限。虽然机器学习(ML)与深度学习(DL)模型在预测性能方面表现卓越,但它们在数据可用性、计算资源消耗及模型解释性方面面临挑战。本研究旨在通过机器学习模型中的知识发现,开发一个稳定性和准确性更高的渗透率预测模型。我们首先应用格子玻尔兹曼方法 (LBM) 来定量分析渗透率与多孔介质的几何拓扑特性之间的关系。机器学习模型的建立基于458个不同类型多孔介质的数据集。利用SHapley Additive exPlanations(SHAP)值,我们定量分析了各个特征对渗透率预测的贡献。研究发现,紧密中心性(网络复杂性特征)、曲折度、孔隙度(宏观特征)以及喉道直径、喉道长度和孔径(孔隙网络特征)对渗透率的预测至关重要。基于这些发现,我们构建了一个新的渗透率预测模型。该模型在多个数据集上显示了良好的适用性,并达到了与其他高阶计算方法相似的精度。我们的工作在简化模型与提高性能之间实现了良好的平衡,为多孔介质渗透率预测提供了一种可靠的替代方案。
 
关键词
机器学习 渗透率 孔隙结构
报告人
张佳
博士生 武汉大学

稿件作者
张佳 武汉大学
马刚 武汉大学 水利水电学院
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询