GloUTCI-M: A Global Monthly 1 km Universal Thermal Climate Index Dataset from 2000 to 2022
编号:2604 访问权限:仅限参会人 更新:2024-04-12 15:15:08 浏览:749次 张贴报告

报告开始:2024年05月18日 08:29(Asia/Shanghai)

报告时间:1min

所在会场:[SP] 张贴报告专场 [sp7] 主题7、遥感与地理信息科学

暂无文件

摘要
Climate change has precipitated recurrent extreme events and emerged as an imposing global challenge, exerting profound and far-reaching impacts on both the environment and human existence. The Universal Thermal Climate Index (UTCI), serving as an important approach to human comfort assessment, plays a pivotal role in gauging how the human adapts to meteorological conditions and copes with thermal and cold stress. However, the existing UTCI datasets still grapple with limitations in terms of data availability, hindering their effective application across diverse domains. We have produced the GloUTCI-M, a monthly UTCI dataset boasting global coverage, an extensive time series spanning from March 2000 to October 2022, and a high spatial resolution of 1km. This dataset is the product of a comprehensive approach leveraging multiple data sources and advanced machine learning models. Our findings underscore the superior predictive capabilities of CatBoost in forecasting UTCI (MAE = 0.747°C, RMSE = 0.943°C, R2 = 0.994) when compared to machine learning models such as XGBoost and LightGBM. Utilizing GloUTCI-M, the geographical boundaries of cold stress and thermal stress areas on a global scale were effectively delineated. Over the span of 2001 to 2021, the mean annual global UTCI registers at 17.24°C, with a pronounced upward trend. Countries like Russia and Brazil emerge as key contributors to the mean annual global UTCI increase, while countries like China and India exert a more inhibitory influence on this trend. Furthermore, in contrast to existing UTCI datasets, GloUTCI-M excels at portraying UTCI distribution at finer spatial resolutions, augmenting data accuracy. This dataset enhances our capacity to evaluate thermal stress experienced by the human, offering substantial prospects across a wide array of applications. The GloUTCI-M is publicly available at https://doi.org/10.5281/zenodo.8310513 (Yang et al., 2023).
关键词
UTCI dataset,human thermal stress,machine learning
报告人
杨智威
博士研究生 北京大学

稿件作者
杨智威 北京大学
彭建 北京大学
刘焱序 北京师范大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询