A novel approach for snow depth retrieval in forested areas by integrating horizontal and vertical canopy structures information
编号:2489 访问权限:仅限参会人 更新:2024-04-12 13:31:09 浏览:850次 口头报告

报告开始:2024年05月20日 11:05(Asia/Shanghai)

报告时间:10min

所在会场:[S17] 主题17、冰冻圈科学 [S17-4] 主题17、冰冻圈科学 专题17.8、专题17.11(20日上午,209)

暂无文件

摘要
Snow cover in forests plays a crucial role in protecting the forest ecosystem, maintaining stability, and providing essential resources, particularly in snow-affected regions at mid- to high-latitudes. However, the presence of forests significantly impacts the accuracy of snow depth retrievals from passive microwave remote sensing. A new index, called normalized difference maximum stem volume (NDMSV), has been constructed by integrating the canopy height and tree cover to develop a novel algorithm for passive microwave snow depth retrieval. By considering both the vertical and horizontal canopy structures, NDMSV can depicts forest density in a more detailed manner than just fraction of forest cover. The validation and comparison of our work in forest perspective demonstrate that the accuracy of snow depth retrieval algorithm developed by us is higher than the algorithm which only consider forest cover fraction, especially in moderately dense or sparsely forested areas, against in situ snow depth data. In addition, our results exhibit high accuracy regardless of canopy height. Spatial-temporal comparison results indicate that our study exhibits the higher retrieval accuracy in the Northeast China and Eastern Siberian Mountains when validated and compared against in situ snow depth, as well as other algorithms and datasets such as ERA5, ERA5-Land and Globsnow. For different snow season, our results perform well during the months with more stable snowpack in the Northeast China, the Central Siberia Plateau, and Eastern Siberian Mountains. Moreover, the accuracy of our algorithm is significantly accurate not only in forested areas, but also in other land types, including farmland and grassland. In conclusion, NDMSV index can effectively capture the forest characteristics and helpful in enhancing snow depth retrieval accuracy.
 
关键词
Snow depth; Forest; Passive microwave remote sensing; CETB;
报告人
岳珊娜
博士研究生 中国科学院西北生态环境资源研究院

稿件作者
岳珊娜 中国科学院西北生态环境资源研究院
车涛 中国科学院西北生态环境资源研究院
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询