Dual role of microbe-FexSy interaction to drive perfluorooctanoic acid multi-path chain reaction decay cycles and secondary minerals-ions (Fe2+/Fe3+) transformation cycles
编号:2470 访问权限:仅限参会人 更新:2024-04-12 13:16:43 浏览:860次 口头报告

报告开始:2024年05月19日 14:30(Asia/Shanghai)

报告时间:10min

所在会场:[S2] 主题2、地球化学 [S2-3] 主题2、地球化学 专题2.8、专题2.4(19日下午,4F观海厅1)

暂无文件

摘要
The coexistence of iron-sulfur minerals (FexSy) and microorganisms is a common phenomenon, often leading to intricate and multifaceted interactions. Perfluorooctanoic acid (PFOA) presents extensive transport and spatial-temporal attenuation characteristics. However, the transport and attenuation mechanism governing PFOA in diverse PFOA-ions occurrence environments, specifically in conjunction with microbe-mineral interaction, remains unclear. In this study, the effects difference between microbe/FexSy (pyrite (FeS2) and pyrrhotite (Fe1−nS)) and microbe-FexSy interaction media on PFOA, and specific effects of four PFOA-ions occurrence environments on PFOA considering microbe-FexSy interaction were investigated. A microbe-FexSy interaction-induced multi-process reaction model was constructed to quantitatively describe influential effects. Results showed a remarkable 277% increase in PFOA attenuation rate (λ) in microbe-FexSy interaction media (0.343 h-1) than in alone FexSy (0.091 h-1). The ions inhibiting effect on PFOA attenuation was demonstrated (λ from 0.343 to 0.159 h-1), with the maximum effect in HCO3-. It can be attributed to the occupation of sites by HCO3- which led to a greater repulsion. More PFOA was dispersed into distant regions (low reaction zone with poor Fe2+/microorganism) compared to other ion environments. Moreover, SO42- or NO3- with microbe-FexSy interaction exhibited pronounced retardation effects (Kd from 0.292 to 0.447 cm3·g-1) on PFOA. Notably, enhanced formations of β-Fe2O3·H2O and α-Fe2O3·H2O regulated PFOA transport behavior in PFOA-SO42- and PFOA-NO3- environments. The common attenuation pathway of PFOA was proposed as Deprotonation (A) with the cycle of Activation (B), decarboxylation (C), hydroxylation (D), HF elimination (E), hydrolysis (F), and HF elimination (E). Pseudomonas reduced Fe3+ to Fe2+, and Rhizobiales contributed to producing 3 Fe2+ after consuming 2 Fe2+. Fe2+ and Pseudomonas combined to drive PFOA multi-path chain reaction decay cycles. This study provided the theoretical basis for understanding PFOA cross-media transport and fate in microbe-mineral-ions interaction environments.
关键词
PFOA,iron sulfur mineral,microorganisms,transport and fate,interaction
报告人
王文兵
副研究员 上海大学

稿件作者
张梦 上海大学
王文兵 上海大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询