Machine-learning-based corrections of CMIP6 historical surface ozone in China during 1950-2014
编号:2132 访问权限:仅限参会人 更新:2024-04-11 22:40:01 浏览:982次 口头报告

报告开始:2024年05月20日 11:45(Asia/Shanghai)

报告时间:5min

所在会场:[S13] 主题13、气溶胶与大气环境 [S13-7] 主题13、气溶胶与大气环境 专题13.3、专题13.8、13.10(20日上午,204)

暂无文件

摘要
The spatiotemporal changes and driving factors of surface ozone in China since 2013 have been widely studied in recent years. However, due to a lack of long-term observations, reports on historical ozone concentration levels, their changes, and influencing factors are severely limited. In this study, we applied the XGBoost machine learning algorithm to correct the CMIP6-simulated surface ozone concentrations from 1950 to 2014. The long-term evolutions of ozone and meteorological effects on interannual ozone variations and trends in China are further analyzed. The results revealed that CMIP6 historical simulations have a large underestimation in ozone concentrations and their trends. The XGB-derived ozone are closer to observations, with R2 value of 0.66 and 0.74 for daily and monthly retrievals, respectively. Both the concentrations and exceedances of ozone in most parts of China have shown increasing trends from 1950 to 2014. The higher ozone growth rates of XGB retrievals than those from the model indicate a regional surface ozone penalty due to the warming climate. The relatively significant increment in ozone are estimated in the Central and Western China. Seasonally, the ozone enhancement is largest in spring, indicating a shift in seasonal varation of ozone. Given the uncertainty in simulating historical ozone by climate model, we show that machine learning approaches can provide improved assessment of evolution in surface ozone, along with valuable information to guide future model development and formulate future ozone pollution prevention and control policies.
关键词
Surface ozone,Machine learning,CMIP6
报告人
仝元熙
本科生 中国地质大学(武汉)

稿件作者
仝元熙 中国地质大学(武汉)
燕莹莹 中国地质大学(武汉)环境学院;湖北省大气污染复合研究中心
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询