Quantifying Wetland Methane Emissions from the Southeastern United States: A Data-driven Approach, Key Variables, and Spatiotemporal Distributions
编号:1838 访问权限:仅限参会人 更新:2024-04-11 19:29:33 浏览:854次 口头报告

报告开始:2024年05月19日 15:50(Asia/Shanghai)

报告时间:5min

所在会场:[S4] 主题​4、生态与可持续发展 [S4-7] 主题4、生态与可持续发展 专题4.1、专题4.5(19日下午,207)

暂无文件

摘要
Methane (CH4) contributes ~20% to post-industrial climate warming due to its greenhouse gas effects. Among all methane sources, wetlands are the single largest and climate-sensitive natural source. Estimating wetland methane emissions involves reconciling top-down inversion and bottom-up process-based models. However, these two model types are dependent and exhibit large disparities. To better understand wetland methane emissions and refine the process-based and inversion models, we need independent high-resolution and long-term wetland methane flux data. Here, we develop a high-spatial-resolution (1 km × 1 km) monthly wetland CH4 flux dataset for the Southeastern (SE) United States (US) from 1982 to 2010 using a data-driven random forest (RF) approach. We utilize CH4 flux measurements from four FLUXNET-CH4 wetland sites to develop the RF regression model along with 11 environmental variables. Wetland CH4 fluxes estimated using the model fit well with the measured CH4 fluxes (R2 = 0.91) from four representative FLUXNET-CH4 wetland sites across the SE US. Leveraging the developed RF model and wetland distribution data, we map the spatial distribution of CH4 emissions in the study region. Our mapping reveals large spatial variability in CH4 emissions, ranging from 0 to 266.0 nmolCH4 m-2 s-1, with the coastal wetland areas, the Mississippi Delta, and the Everglades being the predominant sources of CH4. Our dataset demonstrates good agreement with the remote sensing-derived wetland CH4 fluxes from the Carbon Monitoring System Methane Flux for North America product, confirming the credibility of our wetland CH4 flux estimations. Variable importance analysis highlights that air temperature and the Palmer Drought Severity Index are key environmental predictors. This first-ever high-spatial-resolution (1 km × 1 km) and long-term (1982-2010) monthly gridded regional wetland CH4 flux product over the SE US provide a benchmark and an added constraint for future wetland CH4 flux modeling and upscaling studies in the study region.
关键词
wetland,methane emissions,machine learning,FLUXNET
报告人
何柯琪
博士研究生 Duke University

稿件作者
何柯琪 Duke University
LiWenhong Duke University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月17日

    2024

    05月20日

    2024

  • 03月31日 2024

    初稿截稿日期

  • 03月31日 2024

    报告提交截止日期

  • 05月20日 2024

    注册截止日期

主办单位
青年地学论坛理事会
承办单位
厦门大学近海海洋环境科学国家重点实验室
中国科学院城市环境研究所
自然资源部第三海洋研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询