CONVOLUTIONAL NEURAL NETWORK AND HAVERSINE FORMULA IN PRESENCE SYSTEM FOR EASY ATTENDANCE
编号:98 访问权限:仅限参会人 更新:2024-10-08 22:54:32 浏览:381次 口头报告

报告开始:2024年10月25日 16:45(Asia/Bangkok)

报告时间:15min

所在会场:[RS2] Regular Session 2 [RS2-2] Privacy, Security for Networks

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
As COVID-19 cases continue to rise, minimizing physical contact is essential to curb the virus's spread. IDE LPKIA, an educational institution, currently uses a centralized attendance system based on fingerprint scanning, which increases physical contact and thus the potential for virus transmission. To address this issue, this research proposes a new attendance system that allows employees to mark their attendance independently using their personal smartphones, eliminating the need for centralized attendance stations. The proposed system integrates facial recognition and location radius technology. Facial recognition is implemented using a convolutional neural network (CNN) to ensure accurate identification, while the Haversine formula is employed to calculate the location radius, ensuring attendance can only be registered within a specific geographic area around the institution. This approach not only reduces physical contact but also prevents attendance fraud, as employees can only check in based on their facial identity and within the defined location radius. This system aims to enhance safety and integrity in attendance tracking amidst the ongoing pandemic.
关键词
Face Recognition; attendance; convolutional neural network; haversine formula.
报告人
Andy Victor Pakpahan
Lecture Institut Digital Ekonomi LPKIA

稿件作者
Andy Victor Pakpahan Institut Digital Ekonomi LPKIA
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询