Distributed Radio Resource Allocation Using Deep & Federated Learning in 6G Networks
编号:97 访问权限:仅限参会人 更新:2024-10-21 19:32:09 浏览:390次 口头报告

报告开始:2024年10月25日 14:00(Asia/Bangkok)

报告时间:15min

所在会场:[RS1] Regular Session 1 [RS1-1] Mobile computing, communications, 5G and beyond

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Efficient resource allocation in Device-to-Device (D2D) communication within 6G networks is crucial for enhancing overall network performance and efficiency. This paper presents a novel Deep Learning (DL) based approach for Radio Resource Allocation (RRA), leveraging Distributed Artificial Intelligence (DAI) using Belief-Desire-Intention eXtended (BDIx) agents, dynamic feedback allocation, and a Deep Feedback Neural Network (DFBNN). Additionally, Federated Learning (FL) is integrated to enable distributed training across BDIx agents, serving as D2D Relays (D2DR) or D2D Multihop Relays (D2DMHR), ensuring data privacy and reducing communication overhead. The proposed method is thoroughly evaluated against traditional graph-based and game-theoretic algorithms and Deep Feedforward Neural Networks (DFNN). Results demonstrate significant improvements in interference management, data rate, and execution time. By providing scalable, adaptive, and resilient resource allocation, this proposed method meets the stringent requirements of 6G applications, paving the way for more efficient and reliable network operations.
关键词
6G networks, D2D communication, radio resource allocation, Deep Learning, DFBNN, Federated Learning, DAI
报告人
Ioannou Iacovos
Professor University of Cyprus

稿件作者
Ioannou Iacovos University of Cyprus
Christophoros Christophorou CYENS
Prabagarane N SSN
Vasos Vassiliou University of Cyprus
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询