LungCarcinoGrade-EffNetSVM: A Novel Approach to Lung Carcinoma Grading Using EfficientNetB0 and Support Vector Machine
编号:90 访问权限:仅限参会人 更新:2024-08-22 10:36:27 浏览:294次 口头报告

报告开始:暂无开始时间(Asia/Bangkok)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Lung carcinoma grading is a critical task in the accurate diagnosis and treatment planning of lung cancer. In this study, we present “LungCarcinoGrade-EffNetSVM”, a novel approach that combines the powerful feature extraction capabilities of EfficientNetB0 with the classification prowess of Support Vector Machine (SVM) for lung carcinoma grading. The dataset utilized for this study was sourced from the Kaggle repository and includes images representing three types of lung carcinoma—Adenocarcinoma (ACA), Large Cell Carcinoma (LCC), Squamous Cell Carcinoma (SCC)— along with normal cell samples. Our proposed method achieved an Acc. of 86.88%, Sens. of 86.88%, and Spec. of 95.63%. The Prec. and F1 score were 87.06% and 86.64%, respectively, with a false positive rate (FPR) of 4.37%. The model also demonstrated robust performance with a Matthews correlation coefficient (MCC) of 0.8257 and a Kappa statistic of 0.65. The computational time for grading was recorded at 9.3082 seconds. These results indicate that the integration of EfficientNetB0 and SVM provides a reliable and efficient method for lung carcinoma grading, potentially aiding in more accurate and timely diagnosis of lung cancer.
关键词
Lung carcinoma,EfficientNetb0,SVM,deep learning
报告人
PRABIRA KUMAR SETHY
ASSOCIATE PROFESSOR GURU GHASIDAS VISHWAVIDYALAYA; BILASPUR

稿件作者
PRABIRA KUMAR SETHY GURU GHASIDAS VISHWAVIDYALAYA; BILASPUR
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询