Strategies for Identifying Online Scams
编号:83 访问权限:仅限参会人 更新:2024-08-20 10:36:18 浏览:389次 口头报告

报告开始:2024年10月25日 16:15(Asia/Bangkok)

报告时间:15min

所在会场:[RS2] Regular Session 2 [RS2-2] Privacy, Security for Networks

暂无文件

摘要
With the rapid growth of online transactions and interactions, the threat landscape of scams and fraud has evolved, necessitating sophisticated detection mechanisms. This paper provides an extensive review of the latest advances in detecting online scams and fraud, covering technological solutions, machine learning techniques, and emerging trends in the field. Key methods discussed include advanced machine learning algorithms for anomaly detection, user behavior analytics, and the integration of threat intelligence. Additionally, the study highlights the role of public awareness and education in preventing scams, as well as the importance of international collaboration in law enforcement. By examining current trends and emerging technologies, this study provides strategies for organizations and individuals to enhance their digital security posture, effectively mitigating the risks associated with online scams and frauds.
关键词
Industrial growth,fraud,scammer,detection,digital technology
报告人
Wai Yie Leong
Senior Professor INTI International University

稿件作者
Wai Yie Leong INTI International University
Yuan Zhi Leong Schneider Electric Singapore Pte. Ltd.
Wai San Leong Schneider Electric Singapore Pte. Ltd
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询