Analysis of Neural Network Inference Response Times on Embedded Platforms
编号:79 访问权限:仅限参会人 更新:2024-10-25 06:02:32 浏览:399次 拓展类型1

报告开始:2024年10月26日 09:45(Asia/Bangkok)

报告时间:15min

所在会场:[RS2] Regular Session 2 [RS2-3] AI and Data Analytics

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The response time of Artificial Neural Network (ANN)-inference is of utmost importance in embedded applications, particularly continual stream-processing. Predictive maintenance applications require timely predictions of state changes. This study serves to enable the reader to estimate the response time of a given model based on the underlying platform, and emphasises the relevance of benchmarking generic ANN applications on edge devices. We analyse the influence of net parameters, activation functions as well as single- and multi-threading on execution times. Potential side effects such as tact rate variances or other hardware-related influences are being outlined and accounted for. The results underline the complexity of task-partitioning and scheduling strategies while emphasising the necessity of precise concertation of the parameters to achieve optimal performance on any platform. This study shows that cutting-edge frameworks don't necessarily perform the required concertations automatically for all configurations, which may negatively impact performance.
关键词
Artificial Neural Network Inference,Tensorflow Lite,Embedded Systems,Benchmarking,Response Times
报告人
Patrick Huber
Technical University of Munich;University of Applied Sciences Kempten

稿件作者
Patrick Huber Technical University of Munich;University of Applied Sciences Kempten
Ulrich Göhner University of Applied Sciences Kempten
Mario Trapp Technical University of Munich;Fraunhofer Institute for Cognitive Systems
Jonathan Zender University of Applied Sciences Kempten
Rabea Lichtenberg University of Applied Sciences Kempten
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询