Evaluating Convolutional Neural Network Models: Performance Perspective in Video Summarization
编号:75 访问权限:仅限参会人 更新:2024-08-17 16:13:55 浏览:320次 口头报告

报告开始:暂无开始时间(Asia/Bangkok)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
The nature of data is evolving with technological progress. Initially dominated by text datasets, the focus has now shifted to images and, more recently, to extensive video datasets. This evolution necessitates advanced technologies capable of processing images and developing intelligent systems to accurately extract information from them. Pre-trained convolutional neural network (CNN) models are essential tools for this task. In this paper, we present a comparative analysis of the performance of various CNN models, including AlexNet, GoogleNet, and SqueezeNet, specifically for image classification. We evaluate and compare the accuracy of these models in object detection across three different datasets—animals, birds, and flowers—sourced from Kaggle's online repository.
关键词
Alexnet, Artificial Intelligence, Convolutional Neural Network (Cnn), Deep Learning, Googlenet, Squeezenet
报告人
Dr. Rachit Adhvaryu
Assistant Professor Parul University

稿件作者
Dr. Rachit Adhvaryu Parul University
Dr. Kamal Sutaria Parul University
Dr. Dipesh Kamdar Parul University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询