The impact of varying knowledge on Question-Answering system
编号:74 访问权限:仅限参会人 更新:2024-10-25 02:58:37 浏览:399次 口头报告

报告开始:2024年10月26日 10:00(Asia/Bangkok)

报告时间:15min

所在会场:[RS2] Regular Session 2 [RS2-3] AI and Data Analytics

演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Scale up the large language models to store vast amounts of knowledge within their parameters incur higher costs and training times. Thus, in this study, we aim to examine the effects of language models enhancing external knowledge and compare the performance of extractive and abstractive generation tasks in building the question-answering system. To ensure consistency in our evaluations, we modified the MS MARCO and MASH-QA datasets by filtering irrelevant support documents and enhancing contextual relevance by mapping the input question to the closest supported documents in our database setup. Finally, we materiality assess the performance in the health domain, our experience presents a promising result not only with information retrieval but also with retrieval augmentation tasks aimed at improving performance for future work.
关键词
Extractive generation,Abstractive generation,Knowledge-based Question-Answering
报告人
Anh Nguyen Thach Ha
Student FPT University

稿件作者
Anh Nguyen Thach Ha FPT University
Trung Nguyen Quoc FPT University
Tien Nguyen Van Pythera AI
Hieu Pham Trung Pythera AI
Truong Hoang Vinh Ho Chi Minh City Open University
Tuan Le-Viet Ho Chi Minh City Open University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询