Optimization of the D2D Topology Formation Using a Novel Two-Stage Deep ML Approach for 6G Mobile Networks
编号:60 访问权限:仅限参会人 更新:2024-10-21 19:32:37 浏览:412次 口头报告

报告开始:2024年10月25日 15:00(Asia/Bangkok)

报告时间:15min

所在会场:[RS1] Regular Session 1 [RS1-1] Mobile computing, communications, 5G and beyond

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Optimizing device-to-device (D2D) topologies is pivotal for enhancing the performance and efficiency of 6G networks. This paper introduces a novel approach for forming optimal subnet trees within the  6G networks using BDIx agents and advanced Minimum-Weight Spanning Tree (MWST/MST) algorithms augmented by Graph Neural Networks (GNNs) and FeedForward Neural Networks (FFNN). Our solution aims to significantly boost network performance, particularly in high-demand scenarios such as urban areas, large-scale events, and remote locations. Our approach dynamically adapts to changing network conditions, user movements, and traffic patterns by minimizing power consumption and maximizing throughput. We implement various MWST algorithms, including Kruskal's, Prim's, and Boruvka's algorithms, and introduce a GNN model to predict edge weights combined with FFNNs to select parent nodes (called GNN-FFNN model), aiding in the construction of minimum-weight spanning trees (MWST). Additionally, a "weighted distance" metric is proposed to analyze network performance comprehensively. The proposed AI/ML-driven solution integrates BDIx agents with MWST algorithms, focusing on optimizing subnets under gNodeB in 6G networks, enhancing data transmission efficiency, reducing latency, and increasing throughput. This research contributes to developing scalable and flexible network management solutions suitable for diverse configurations and architectures.
关键词
Device-to-Device (D2D) communication, 6G networks, Minimum-Weight Spanning Tree (MWST), Graph Neural Networks (GNNs), BDIx agents, network optimization, power consumption, throughput, dynamic adaptation.,Feed
报告人
Ioannou Iacovos
Dr. University of Cyprus

稿件作者
Ioannou Iacovos University of Cyprus
Marios Raspopoullos INSPIRE Research Centre, University of Central Lancashire, Larnaca, Cyprus
Prabagarane Nagaradjane SSN
Christophoros Christophorou University of Cyprus
Ala' Khalifeh German Jordanian University, Amman, Jordan
Vasos Vassiliou University of Cyprus
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询