Optimizing YOLOv8 for Efficient Tomato Recognition in Greenhouse Environments Using Drone Imagery
编号:34 访问权限:公开 更新:2024-08-05 15:25:24 浏览:448次 口头报告

报告开始:2024年10月26日 11:45(Asia/Bangkok)

报告时间:15min

所在会场:[RS2] Regular Session 2 [RS2-4] Others

摘要
This study delves into the practical application and fine-tuning of YOLOv8 models for real-time tomato recognition using drone imagery within greenhouse environments. We evaluated YOLO’s speed, robustness, and adaptability, finding that varying batch sizes and epochs had minimal impact on performance. Notably, YOLOv8n performed on par with the extra-large YOLOv8x model, offering a significant advantage: training time was up to 60 times shorter. Further tuning and innovative training strategies revealed that the Final Learning Rate (lrf) and dataset annotation quality were the most influential factors for model performance. Fine-tuning the lrf and re-annotating datasets markedly improved accuracy, underscoring the importance of optimizing learning rates and maintaining high-quality annotations for effective YOLO models. Our results also demonstrated the superiority of YOLOv8 over YOLOv5. The optimized YOLOv8n model is well-prepared for deployment in upcoming tomato recognition tasks, paving the way for more efficient agricultural monitoring. This work also provides valuable insights into the broader field of object recognition and offers practical guidance for researchers tackling similar challenges.
关键词
AI, Agriculture, CV, Deep Learning, Machine Learning
报告人
Oleg Shovkovyy
University Lecturer CMKL

稿件作者
Oleg Shovkovyy CMKL University
Hossein Miri Chulalongkorn University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询