Distributed Self-Localization with Improved Optimization with machine learning in IoT Applications
编号:149 访问权限:仅限参会人 更新:2024-10-08 21:17:57 浏览:445次 张贴报告

报告开始:2024年10月25日 14:45(Asia/Bangkok)

报告时间:5min

所在会场:[PS] Poster Session [PS] Poster

暂无文件

摘要
The Internet of things (IoT) is one of the most trending technologies which is used to monitor a huge number of devices worldwide. Device localization and optimal path selection is very essential in this technology to maintain the communication standard of the devices. To reduce the delay and power utilization of the devices and to attend high efficiency these parameters are needed to get concentrated. For that in this article distributed self-localization with an improved optimization model is developed using machine learning (DSLIOM) algorithms. The core modules of this article are efficient data processing analysis and improved optimization algorithm. This network structure with the huge number of devices is simulated in the software called NS3 where a large number of devices are effectively monitored and properly localized. The parameters which are calculated to analyses the performance are data success rate, network throughput, routing overhead, data loss rate and delay. From the result it is proven that this DSLIOM attends better performance than earlier works in terms of data success rate and the network throughput
关键词
Internet of things (IoT), Machine Learning, Improved Optimization Model and Distributed Self-Localization.
报告人
Zahraa Hameed Jaber
Teacher National University of Science and Technology

稿件作者
Mohammed Ihsan The Islamic University
Zahraa Hameed Jaber National University of Science and Technology
Gokulakrishnan S Dayananda Sagar University
Hanaa Ali Alshaibani Altoosi University College
Fatima Alsalamy Al-Mustaqbal University
Hussein Al-Aboudy Mazaya University College
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询