Revolutionizing cyber security in WSN: ML-driven data sensing and fusion
编号:141 访问权限:仅限参会人 更新:2024-10-08 21:17:54 浏览:392次 张贴报告

报告开始:2024年10月25日 15:25(Asia/Bangkok)

报告时间:5min

所在会场:[PS] Poster Session [PS] Poster

暂无文件

摘要
There are significant cybersecurity challenges that face wireless sensor networks (WSNs) as a result of their decentralized nature and limited resources although they are highly important in most fields. Traditional security mechanisms frequently fail to cope with the changing and diverse conditions in WSNs. To reduce data transfer but maintain WSNs sensor saturation and data security, this work proposes a prediction-based data fusion and sensing strategy. The suggested method called the ARIMA-SK-EELM system which is made up of Autoregressive Integrated Moving Average (ARIMA), Stable Kernel-Enhanced Extreme Learning Machine (SK-EELM), and threefish algorithm (TFA). In the procedure on data sensing and fusion, ARIMA predicts initially from a few data elements, SK-EELM for precise accuracy on initial expected value similar to actual value while TFA is used during transmissions for both encoded and decoded data. This paper introduces an ARIMA-SK-EELM model with high predictability, low interferences, strong scalability, and secrecy. The results of simulation show that this technique suggested can be effective in reducing unnecessary transfers by accurate forecasting.
关键词
Wireless Sensor Networks (WSNs), Cybersecurity, Prediction-based Data Gathering, Autoregressive Integrated Moving Average-Stable Kernel-Enhanced Extreme Learning Machine (ARIMA-SK-EELM), Data Security, Threefish Algorithm (TFA)
报告人
Tabarek Hasanain AlDaami
N/A Altoosi University College

稿件作者
Tabarek Hasanain AlDaami Altoosi University College
Seelam Ch Vijaya MVSR Engineering College
H.M. Al-Aboudy Mazaya University College
A. Manimaran College of Engineering and Technology Chengalpattu
Fatima Alsalamy Al-Mustaqbal University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询