A Reinforcement Learning Based Strategy for Optimal Placement of Electric Vehicle Charging Stations in Smart City for Urban Planning
编号:136 访问权限:仅限参会人 更新:2024-09-20 15:16:37 浏览:424次 口头报告

报告开始:2024年10月26日 09:35(Asia/Bangkok)

报告时间:15min

所在会场:[RS1] Regular Session 1 [RS1-3] Emerging Trends of AI/ML

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In this paper, we present a Reinforcement Learning (RL) based strategy for placing optimal charging stations (CS) of electric vehicles (EVs) in the case of Urban planning and smart city development under digital twin. The objective is to minimize the energy required by EVs to reach the CS for recharging. Our approach shows the efficacy of computationally identified CS placement over random placement. Extensive research has demonstrated that an RL-based strategy yields better results in identifying suitable CS locations than random positioning. Based on our investigation, the proposed method finds the most effective positions and some alternative locations for the placement of CS. This study presents a novel approach with 13.15 % enhancement in energy efficiency compared to related research findings. Furthermore, our proposed approach demonstrates expedited attainment of an optimal policy, outperforming existing literature.
关键词
Charging station placement, reinforcement learning, epsilon--greedy policy, energy consumption, Urban Planning, Smart City
报告人
Santi Prasad Maity
Professor Indian Institute of Engineering Science and Technology, Shibpur

稿件作者
Subrata Pan Indian Institute of Engineering Science and Technology; Shibpur
Santi Prasad Maity Indian Institute of Engineering Science and Technology, Shibpur
Ioannou Iacovos Department of Computer Science, University of Cyprus, and CYENS - Centre of Excellence, 1678 Nicosia, Cyprus;
Vasos Vassiliou Department of Computer Science, University of Cyprus, and CYENS - Centre of Excellence, 1678 Nicosia, Cyprus
Krishnendu Adhvaryu Bankura Unnayani Institute of Engineering
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询