Integrating Local and Global Frequency Attention for Multi-Teacher Knowledge Distillation
编号:126 访问权限:仅限参会人 更新:2024-09-19 17:57:45 浏览:406次 张贴报告

报告开始:2024年10月25日 14:05(Asia/Bangkok)

报告时间:5min

所在会场:[PS] Poster Session [PS] Poster

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Knowledge distillation, particularly in multi-teacher settings, presents significant challenges in effectively transferring knowledge from multiple complex models to a more compact student model. Traditional approaches often fall short in capturing the full spectrum of useful information. In this paper, we propose a novel method that integrates local and global frequency attention mechanisms to enhance the multi-teacher knowledge distillation process. By simultaneously addressing both fine-grained local details and broad global patterns, our approach improves the student model's ability to assimilate and generalize from the diverse knowledge provided by multiple teachers. Experimental evaluations on standard benchmarks demonstrate that our method consistently outperforms existing multi-teacher distillation techniques, achieving superior accuracy and robustness. Our results suggest that incorporating frequency-based attention mechanisms can significantly advance the effectiveness of knowledge distillation in multi-teacher scenarios, offering new insights and techniques for model compression and transfer learning.
关键词
knowledge distillation, frequency attention mechanisms, model compression, deep learning
报告人
Zhidi Yao
Mr. Hosei University

稿件作者
Zhidi Yao Hosei University
Mengxin Du Instrumentation Technology and Economy Institute
Xin Cheng Hosei University
Zhiqiang Zhang Southwest University of Science and Technology
Wenxin Yu Sichuan Civil-military Integration Institute;Fujiang Laboratory
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询