Advancements in Lung Cancer Diagnosis: A Comprehensive Study on the Role of PCA, LDA, and t-SNE in Deep Learning Frameworks
编号:123 访问权限:仅限参会人 更新:2024-10-07 19:16:10 浏览:399次 拓展类型1

报告开始:2024年10月26日 10:45(Asia/Bangkok)

报告时间:15min

所在会场:[RS2] Regular Session 2 [RS2-4] Others

暂无文件

摘要
In the ever-evolving domain of medical imaging, the integration of deep learning techniques holds the promise of transformative advancements. This research delved into the potential of employing data transfer within deep learning architectures for the automated detection of three distinct lung cancer types. Leveraging sophisticated methodologies like linear discriminant analysis (LDA), t-SNE, and PCA, the study aimed to enhance accuracy and efficiency in detecting malignancies from lung CT scan images. On rigorous evaluation, the models demonstrated compelling accuracy rates: salivary gland-type lung tumors at 90.5%, pleomorphic (spindle/giant cell) carcinoma at 88.2%, and primary pulmonary sarcomas at 91.3%. Additionally, ROC curve analysis further highlighted the robust discriminative capability of the models across varied decision thresholds. The promising results accentuate the potential of integrating data transfer techniques with deep learning in a clinical setting. This research not only exhibits a significant stride in lung cancer detection but also paves the path for further innovations in automated medical image analysis.
关键词
Data transfer,deep learning,lung cancer detection,dimensionality reduction,ROC curve analysis
报告人
Vikas B
Koneru Lakshmaiah Education Foundation; Bowrampet

稿件作者
Vikas B Koneru Lakshmaiah Education Foundation; Bowrampet
Satya Sukumar Makkapati Acharya Nagarjuna University
Srinivasa Rao Bogireddy Horizon Systems Inc
Balamurugan K.S. Karpaga Vinayaga College of Engineering and Technology
M Deepa Sri Shakthi Institute of Engineering and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询