IMAGE ANALYSIS FOR TURNING DEFECT OF COMMUTATOR SURFACE
编号:118 访问权限:仅限参会人 更新:2024-10-14 06:47:22 浏览:426次 拓展类型1

报告开始:2024年10月25日 15:00(Asia/Bangkok)

报告时间:15min

所在会场:[RS2] Regular Session 2 [RS2-1] IoT and applications

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The quality of commutator surfaces in DC motors significantly affects the performance and longevity of the motors. Traditional methods of inspecting commutator surface defects, such as roundness and roughness meters, have limitations in detecting subtle and complex surface irregularities. This study proposes an image analysis technique combined with convolutional neural networks (CNNs) to enhance the detection of commutator surface defects. Our method improves the identification and classification of defects, correlating these findings with the assembly quality of DC motors. Although the experimental results are premilitary, it validates the effectiveness of the proposed approach, demonstrating improvements in defect detection accuracy. Future work will focus on expanding the image dataset and refining the CNN model to enhance its accuracy and real-time application capabilities.
关键词
defect detection, DC motor quality control, surface defects, correlation table, convolutional neural networks (CNNs)
报告人
Zhong-Ping Shao
Ph. D. Candidates Huafan University

稿件作者
Zhong-Ping Shao Huafan University
Cheng-Yuan Tang Huafan University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询