Deep Learning-Based Drug Discovery: A Promising Approach for Precision Medicine in Healthcare
编号:117 访问权限:仅限参会人 更新:2024-09-11 17:41:18 浏览:364次 拓展类型1

报告开始:暂无开始时间(Asia/Bangkok)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Abstract—The advent of deep learning techniques has revolutionized the field of drug discovery, offering a promising approach for precision medicine in healthcare. This research paper aims to explore the transformative potential of deep learning in accelerating the identification and development of targeted therapies tailored to individual patient profiles. By leveraging large-scale biological and chemical data, deep learning algorithms have demonstrated remarkable capabilities in predicting molecular interactions, identifying drug candidates, and optimizing treatment regimens. This paper reviews the current state of deep learning-based drug discovery methods, highlighting their ability to uncover novel therapeutic targets, repurpose existing drugs, and facilitate the design of personalized treatment strategies. Furthermore, the ethical and regulatory considerations associated with the integration of deep learning in precision medicine are critically examined. Through a comprehensive analysis of the literature and case studies, this research paper elucidates the opportunities and challenges presented by deep learning-based drug discovery, emphasizing its potential to revolutionize the delivery of tailored healthcare interventions and improve patient outcomes.
关键词
Convolution neural network; Deep learning; Image classification,Drug Discovery,Precision Medicine,Health Care,Artificial Intelligence
报告人
Riyaz Ahmad
Southwest Jiaotong University

稿件作者
Riyaz Ahmad Southwest Jiaotong University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询