177 / 2023-11-27 14:11:31
Research on Denoising Methods for Hyperspectral Images Based on Low-Rank Theory and Sparse Representation
Hyperspectral Images, Noise Estimation, Low-Rank, Sparse Representation
终稿
Wanning Tao / Tongji University
Na Liu / Tongji University
Yiming Chen / Tongji University
Jin Su / LanZhou University of Finance and Economics
Hui Xiao / Tongji University
Xuefeng Li / Tongji University
This study addresses the issue of noise interference in hyperspectral images (HSI). By combining singular value decomposition (SVD) with an adaptive block algorithm, an improved algorithm for estimating noise intensity is proposed, aiming for precise assessment of noise levels. Additionally, an enhanced denoising method for hyperspectral images is introduced by integrating low-rank theory and sparse representation algorithms. The research results indicate that, for the Indian Pines public dataset, the denoising performance of the study surpasses existing algorithms by over 3.0 dB. Furthermore, robustness in estimating noise intensity is observed. Valuable insights for denoising similarly structured data with low signal-to-noise ratios are provided by this research, contributing meaningfully to the field.
重要日期
  • 会议日期

    11月02日

    2023

    11月04日

    2023

  • 12月15日 2023

    初稿截稿日期

  • 12月20日 2023

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
Xidian University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询