175 / 2023-11-26 21:16:21
WRONG
A
全文待审
刘 娜 / 同济大学
This study addresses the issue of noise interference in hyperspectral images (HSI). By combining singular value decomposition (SVD) with an adaptive block algorithm, an improved algorithm for estimating noise intensity is proposed, aiming for precise assessment of noise levels. Additionally, an enhanced denoising method for hyperspectral images is introduced by integrating low-rank theory and sparse representation algorithms. The research results indicate that, for the Indian Pines public dataset, the denoising performance of the study surpasses existing algorithms by over 3.0 dB. Furthermore, robustness in estimating noise intensity is observed. Valuable insights for denoising similarly structured data with low signal-to-noise ratios are provided by this research, contributing meaningfully to the field.
重要日期
  • 会议日期

    11月02日

    2023

    11月04日

    2023

  • 12月15日 2023

    初稿截稿日期

  • 12月20日 2023

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
Xidian University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询