163 / 2023-10-22 10:41:57
Parameter-optimized Adaptive Local Iterative Filtering for Bearing Fault Diagnosis
Parameter-optimized adaptive local iterative filtering (ALIF), Local minimum envelop entropy, Singular value difference spectrum (SVDS), Fault diagnosis
全文录用
Rui Yuan / Wuhan University of Science and Technology
Yi Zhang / Wuhan Polytechnic University
A novel methodology is proposed to analyze roller-bearing vibration signals in the presence of strong background noise, especially when detecting weak faulty features obscured by the noise. The approach involves two main steps. Firstly, it employs parameter-optimized adaptive local iterative filtering (ALIF) to obtain Intrinsic Mode Functions (IMFs) of the vibration signal. Particle swarm optimization (PSO) is used to determine the best parameters for ALIF, optimizing the combination based on the local minimum envelope entropy (LMEE) as a fitness function. This helps identify IMF components with distinct fault features via correlation analysis. In the second step, the singular value difference spectrum (SVDS) is applied to the selected IMF component to reduce noise and determine the optimal rank truncation for identifying fault feature frequencies. Experimental and numerical models confirm the effectiveness of this approach in identifying early roller bearing faults in noisy environments. In summary, the method integrates ALIF and SVDS for accurate detection of weak faulty features in complex settings.

 
重要日期
  • 会议日期

    11月02日

    2023

    11月04日

    2023

  • 12月15日 2023

    初稿截稿日期

  • 12月20日 2023

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
Xidian University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询