143 / 2023-09-20 23:53:06
Demagnetization Fault Diagnosis Based on Feature Extraction and Convolutional Neural Network for Permanent Magnet Generator
permanent magnet synchronous generator,demagnetization fault,feature extraction,convolutional neural network
终稿
Sichao Zhang / Xi’an Jiaotong University
Yu Chen / Xi'an Jiaotong University
Feng Liang / Xi'an Jiaotong University
Nadeem Shahbaz / Xi’an Jiaotong University
Shouwang Zhao / Xi’an Jiaotong University
Yong Ma / Xi’an Thermal Power Research Institute Co. Ltd
Chong Li / Xi’an Thermal Power Research Institute Co. Ltd
Wei Deng / Xi’an Thermal Power Research Institute Co. Ltd
Yong Zhao / Xi’an Thermal Power Research Institute Co. Ltd
During the operation of permanent magnet wind turbines, demagnetization faults of magnetic steel may occur, which directly affects the normal operation of wind turbines and has adverse effects on wind power generation. This paper proposes a comprehensive diagnosis method for demagnetization faults of permanent magnet generators based on feature extraction and convolutional neural network. A permanent magnet generator with a power of 25kW was used for demagnetization fault simulation experiments, which can truly simulate the operation of the permanent magnet generator under different demagnetization conditions. Collect the current signal of the experimental generator during operation, perform multiple feature extraction on it, and train the extracted different feature components through convolutional neural networks to achieve pattern recognition of the feature signal, in order to determine the operating status of the generator and achieve demagnetization fault diagnosis of permanent magnet wind turbines.

 
重要日期
  • 会议日期

    11月02日

    2023

    11月04日

    2023

  • 12月15日 2023

    初稿截稿日期

  • 12月20日 2023

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
Xidian University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询