106 / 2023-09-19 19:41:35
A cooprative hybrid evolutionary algorithm for flexible scheduling with AGVs
flexible job shop scheduling,cooperative co-evolutionary algorithms,automated guided vehicle
终稿
Yiming Luo / Dalian University of Technology
Qing Zhang / Dalian University of Technology
Lin Lin / Dalian University of Technology
The flexible job shop scheduling problem (fJSP) is an extension of the traditional job shop scheduling problem (JSP) and is characterized by complexity, stochasticity, and multiple constraints. While evolutionary algorithms (EA) have been used to solve fJSP, the increasing problem scale and the integration of automatic guided vehicles (AGVs) in manufacturing systems present challenges for existing algorithms. This paper proposes a cooperative hybrid EA (ChEA) that uses symbolic and network modelling to represent and solve fJSPs with AGVs. The fJSPs are encoded using a three-stage random-key representation to prevent global optimal deadlocks and ensure solution feasibility. The ChEA approach decomposes the variable and solution spaces into smaller-scale spaces to allow for co-evolutionary optimization. The paper compares the performance of several evolutionary algorithms and identifies particle swarm optimization (PSO) based on Gaussian distribution and locally optimal individuals as the most effective algorithm for global search. The ChEA approach demonstrates competitive performance in terms of average performance, robustness, stability, and finding optimal values through numerical experiments.
重要日期
  • 会议日期

    11月02日

    2023

    11月04日

    2023

  • 12月15日 2023

    初稿截稿日期

  • 12月20日 2023

    注册截止日期

主办单位
IEEE Instrumentation and Measurement Society
Xidian University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询