66 / 2023-04-12 09:32:15
Machine learning assisted pulse shaping for double cone ignition implosions
inertial confinement fusion,Rayleigh-Taylor instability,pulse shaping,machine-learning
摘要录用
Tao Tao / University of Science and Technology of China
Guannnan Zheng / University of Science and Technology of China
Jian Zheng / university of science and technology of china
Pulse shaping is a powerful tool for mitigating implosion instabilities in direct-drive inertial confinement fusion. However, the high-dimensional and nonlinear nature of implosions makes the pulse optimization quite challenging. The optimal pulse shape depends on the details of laser non-uniformity, target layering, and target material. In this research, we use machine learning to design the pulse shape for higher compression density and more stable implosion. The optimization model takes into account the facility-specific laser imprint pattern and RTI seeding. This optimization is applied to the novel double-cone ignition (DCI) scheme. Simulation shows that the optimized pulse increases the areal density expectation by 16% in 1-D and the clean fuel thickness by a factor of 4 in 2-D. This pulse design method could be a useful tool for controlling the instability of direct-drive ICFs.
重要日期
  • 会议日期

    06月05日

    2023

    06月09日

    2023

  • 04月30日 2023

    提前注册日期

  • 05月01日 2023

    摘要截稿日期

  • 05月01日 2023

    摘要录用通知日期

  • 05月01日 2023

    初稿截稿日期

  • 05月31日 2023

    注册截止日期

主办单位
等离子体物理重点实验室
北京师范大学天文系
承办单位
Matter and Radiation at Extremes期刊
中国工程物理研究院流体物理研究所
北京应用物理与计算数学研究所
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询