298 / 2023-10-11 15:47:09
Stability Risk Assessment of Underground Rock Pillars Using Logistic Model Trees
Rock pillar; Logistic Model Trees (LMT); Stability prediction; Cross-validation
摘要待审
NING LI / Auhui University of Science and Technology
Pillars are important structural elements to provide temporary or permanent support in underground spaces. Unstable pillars can result in rock sloughing, leading to roof collapse, and they can also cause rock burst. Hence, prediction of underground pillar stability is important. This paper presents a novel application of Logistic Model Trees (LMT) to predict underground pillar stability. Seven parameters —pillar width, pillar height, ratio of pillar width to height, uniaxial compressive strength of rock, average pillar stress, underground depth, and Bord width— are employed to construct LMTs for rock and coal pillars. The LogitBoost algorithm is applied to train two data sets of rock and coal pillars case histories. The two models are validated with (i) 10-fold cross-validation and with (ii) another set of new case histories. Results suggest that the accuracy of the proposed LMT is the highest among other common machine learning methods previously employed in the literature. Moreover, a sensitivity analysis indicates that the average stress, p, and the ratio of pillar width to height, r, are the most influential parameters for the proposed models.
重要日期
  • 会议日期

    10月26日

    2023

    10月29日

    2023

  • 10月15日 2023

    摘要截稿日期

  • 10月15日 2023

    初稿截稿日期

  • 11月13日 2023

    注册截止日期

主办单位
国际矿山测量协会
中国煤炭学会
中国测绘学会
承办单位
中国矿业大学
中国煤炭科工集团有限公司
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询