220 / 2023-09-27 00:20:30
Multi-source fusion positioning algorithm of ROS robot platform based on improved LVI-SAM
Underground complex environment;,improved LVI-SAM,multi-source fusion
摘要待审
星星 肖 / 北京建筑大学 测绘与城市空间学院


The rapid acquisition of surrounding environmental information for the carrier is crucial for achieving accurate and robust positioning in underground spaces. This study focuses on optimizing the fusion of lidar, vision, and inertial navigation using the LVI-SAM algorithm to achieve robust positioning of the ROS robot platform in underground spaces. The proposed method enhances visual initialization by utilizing imu node data prediction, improves visual depth estimation with laser data, enhances the interaction of node data information by providing bias initial estimates for the imu through vision, and constructs a closed-loop factor using the global pose map to facilitate algorithm optimization. Experimental results demonstrate that the optimized algorithm effectively reduces positioning translation errors and enables high-precision and robust acquisition of position information in the underground complex field environment for the ROS robot platform.
重要日期
  • 会议日期

    10月26日

    2023

    10月29日

    2023

  • 10月15日 2023

    摘要截稿日期

  • 10月15日 2023

    初稿截稿日期

  • 11月13日 2023

    注册截止日期

主办单位
国际矿山测量协会
中国煤炭学会
中国测绘学会
承办单位
中国矿业大学
中国煤炭科工集团有限公司
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询