断层剪切黏滑机器学习预测研究
编号:3814 访问权限:私有 更新:2023-04-20 22:23:16 浏览:507次 特邀报告

报告开始:2023年05月07日 09:04(Asia/Shanghai)

报告时间:10min

所在会场:[3B] 3B、地质灾害与工程地质 [3B-1] 3B-1 地质灾害与工程地质

暂无文件

摘要
Predicting earthquakes has been a long-standing challenge. Recently, machine learning (ML) approaches have been employed to predict laboratory earthquakes using stick-slip dynamics data obtained from shear experiments. However, the data utilized are often acquired from only a few sensor points, thus insufficient in feature dimension and may limit the predictive power of ML. To address this issue, we adopt the combined finite-discrete element method (FDEM) to simulate a two-dimensional sheared granular fault system, from which abundant fault dynamics data (i.e., displacement and velocity) during stick-slip cycles are collected at 2203 “sensor” points densely placed in the numerical model. We then use the simulated data to train the LightGBM (Light Gradient Boosting Machine) models and predict the normalized gouge-plate shear stress (an indicator of stick-slips). Meanwhile, to optimize features, we build the importance ranking of input features and select those with top importance for prediction. We iteratively optimize and adjust the feature data, and finally reach a LightGBM model with an acceptable prediction accuracy (R2 = 0.91). The SHAP (SHapley Additive exPlanations) values of input features are also calculated to quantify their contributions to prediction. We show that when sufficient fault dynamics data are available, LightGBM, together with the SHAP value approach, is capable of accurately predicting the occurrence time and magnitude of laboratory earthquakes, and also has the potential to uncover the relationship between microscopic fault dynamics and macroscopic stick-slip behaviors. This work may shed light on natural earthquake prediction and open new possibilities to explore useful earthquake precursors using ML.
关键词
断层,剪切黏滑,机器学习,预测
报告人
高科
南方科技大学

稿件作者
高科 南方科技大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月05日

    2023

    05月08日

    2023

  • 03月31日 2023

    初稿截稿日期

  • 05月25日 2023

    注册截止日期

主办单位
青年地学论坛理事会
中国科学院青年创新促进会地学分会
承办单位
武汉大学
中国科学院精密测量科学与技术创新研究院
中国地质大学(武汉)
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询