Combining multiple spectral enhancement features for improving spectroscopic asymptomatic detection and symptomatic severity classification of southern corn leaf blight
编号:230 访问权限:私有 更新:2023-05-04 16:52:37 浏览:499次 张贴报告

报告开始:2023年05月06日 08:15(Asia/Shanghai)

报告时间:1min

所在会场:[SP] 张贴报告专场 [SP-7-1] 7、遥感与地理信息科学

演示文件

提示:该报告下的文件权限为私有,您尚未登录,暂时无法查看。

摘要
Southern corn leaf blight (SCLB) seriously threatens corn production. The timely and accurate monitoring of SCLB conditions (e.g., detection during the asymptomatic stage and severity classification during the symptomatic stage) is valuable for precision agriculture, because the application of pesticides depends on disease conditions. Compared with time-consuming and laborious field surveys, spectroscopy is a promising tool for plant disease monitoring. The unique advantages of combining multiple spectral enhancement features for monitoring rice and wheat diseases have been recognized. However, physiological and biochemical differences between maize leaves and rice and wheat leaves, along with the specific spectral response of SCLB, are likely to affect the performance of combining multiple spectral enhancement features. In addition, similar previous studies have not combined spectral slope features, i.e., first-order spectral derivatives (FSDs), with spectral bands (SBs) and spectral indices (SIs) and wavelet features (WFs) to improve plant disease detection. Thus, the performance of a method that combines FSDs, WFs, SBs, and SIs for SCLB asymptomatic detection, symptomatic detection, and symptomatic severity classification should be evaluated further. Here, the utility of combining SBs, SIs, WFs, and FSDs was quantified and evaluated in the asymptomatic detection, symptomatic detection, and symptomatic severity classification of SCLB. Various forms of spectral enhancement features that were sensitive to SCLB infection from the asymptomatic stage to the severe stage were first identified and combined using the RELIEF-F and sequential floating forward selection algorithms on the basis of two independent inoculation experiments. Finally, SCLB asymptomatic detection, symptomatic detection, and symptomatic severity classification models were developed and evaluated using the support vector machine algorithm. Results showed that combining FSDs with SBs, SIs, and WFs achieved the best performance in SCLB spectroscopic monitoring. (1) SCLB asymptomatic detection and symptomatic detection were moderately improved, i.e., overall accuracy (OA) and macro F1 (MF1) improved by ~ 1% to 2%. The OA of SCLB asymptomatic detection was 87.1% with an MF1 of 0.87, and that of symptomatic detection was 93.1% with an MF1 of 0.93. (2) SCLB symptomatic severity classification was significantly improved, i.e., OA and MF1 improved by ~ 7%. The OA of severity classification was 81.8% with am MF1 of 0.82.This study demonstrated that the complementary relationships among SBs, SIs, WFs, and FSDs could effectively improve SCLB spectroscopic monitoring. The proposed method provides a novel tool for large-scale SCLB spectroscopic monitoring. It has broad implications for assisting management decisions (i.e., when and where to apply pesticides and how much to apply) in precision agriculture.
关键词
智慧农业;农业遥感;人工智能;植物病害
报告人
孟冉
华中农业大学

赵平
博士生 华中农业大学

稿件作者
孟冉 华中农业大学资源与环境学院
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月05日

    2023

    05月08日

    2023

  • 03月31日 2023

    初稿截稿日期

  • 05月25日 2023

    注册截止日期

主办单位
青年地学论坛理事会
中国科学院青年创新促进会地学分会
承办单位
武汉大学
中国科学院精密测量科学与技术创新研究院
中国地质大学(武汉)
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询