Multi-Time Scale Energy Management Strategy based on MPC for 5G Base Stations Considering Backup Energy Storage and Air Conditioning
编号:85 访问权限:公开 更新:2023-06-14 17:12:56 浏览:682次 张贴报告

报告开始:2023年06月19日 09:00(Asia/Shanghai)

报告时间:0min

所在会场:[E] Poster Session [E2] Poster Session 2

摘要
The increasing development of 5G technology has  focused attention on the energy consumption of its base stations. As a result, it is crucial to establish energy-efficient 5G networks  and reduce the operating costs associated with 5G base stations. In this paper, a multi-time-scale energy management strategy  based on model predictive control (MPC) is proposed to achieve  this aim. Firstly, a 5G base station model that takes into account  several factors is established, including backup energy storage,  inverter air conditioning scheduling potential, photovoltaic  output fluctuations, load, and temperature. Secondly, a day ahead optimal economic dispatch model for minimizing  operational costs is developed. Thirdly, an intraday rolling  optimization strategy based on MPC to dynamically adjust the  day-ahead operation scheme is proposed. Finally,  comprehensive case studies are carried out, which indicate that  the proposed strategy can effectively improve the robustness  and economy of the system. 
关键词
5G base station;model predictive control;rolling optimization;optimal scheduling
报告人
Ding Ting

Junhua Wang

Jose Matas

M. Guerrero Josep

Ruixun Qiao

Chenlu Wang

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月16日

    2023

    06月19日

    2023

  • 06月15日 2023

    报告提交截止日期

  • 07月02日 2023

    注册截止日期

主办单位
Huazhong University of Science and Technology, China
(IEEE PELS)
IEEE
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询