Automatically Tuning of Weighting Factors for FCS-MPC in PMSM Drives Using Lightweight Neural Network
编号:73 访问权限:公开 更新:2023-06-12 15:35:19 浏览:641次 张贴报告

报告开始:2023年06月19日 09:00(Asia/Shanghai)

报告时间:0min

所在会场:[E] Poster Session [E1] Poster Session 1

摘要
The deep neural network (DNN) has recently emerged as a compelling approach for predicting the weighting factors of finite control-set model predictive control (FCS-MPC). Nonetheless, the considerable size of DNN parameters necessitates additional computational resources. To address this concern, this paper proposes a lightweight network (L-DNN) strategy to reduce the number of parameters and computational demands for DNN. The proposed method utilizes TensorRT for tensor decomposition and quantization for the trained DNN. As a result, the proposed method occupies fewer logic resources in FCS-MPC, providing the desired behavior with fast dynamic response. Comparative simulations demonstrate that the designed lightweight strategy significantly reduces DNN parameter size without compromising the predictive accuracy. Finally, the dynamic adjustment of weighting factors is validated through simulations on the permanent magnet synchronous motor drives fed by a three-level neutral-point-clamped inverter. More demonstrations and experimental validations will be presented in the full paper.
 
关键词
Deep neural network, Lightweight network design, Model predictive control, TensorRT, Weighting factors.
报告人
Chunxing Yao

Shuai Xu
Southwest Jiaotong University

Zhenyao Sun

Guanzhou Ren

Guohua Li

Guangtong Ma

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    06月16日

    2023

    06月19日

    2023

  • 06月15日 2023

    报告提交截止日期

  • 07月02日 2023

    注册截止日期

主办单位
Huazhong University of Science and Technology, China
(IEEE PELS)
IEEE
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询