Research on A Cooperative On-ramp Control Method Based on VDN Algorithm
编号:67 访问权限:仅限参会人 更新:2022-07-06 14:28:21 浏览:174次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
At present, the congestion of on-ramp regions and the frequent occurrence of traffic accidents easily lead to freeway congestion. The traditional ramp metering   methods have hysteresis in traffic flow adjustment. Therefore, it is of great practical significance to research on the intelligent control methods in on-ramp regions of the freeway. In this work, the mechanism of the active management strategies of the freeway is introduced and the theory of deep reinforcement learning is illustrated. Then, a cooperative control model using a multi-agent deep reinforcement learning algorithm VDN is designed. Simulations are conducted in SUMO compared with other methods. The simulation result shows that the deep reinforcement learning control methods, especially the cooperative control method with VDN algorithm have better performance in the downstream average flow, ramp queue length and total travel time and better prediction ability for traffic conditions, and can make the traffic flow run more smoothly and improve the traffic efficiency.
 
关键词
暂无
报告人
Luchuan Chen Chen
Southeast University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询