A Game Theory-Based Approach for Modeling Freeway On-Ramp Merging and Yielding Behavior in an Autonomous Environment
编号:37 访问权限:公开 更新:2022-07-06 14:53:18 浏览:160次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
To optimize the Connected-Automated Vehicles (CAVs) operation system, ensure the merging and yielding behavior safety and efficiency at freeway on-ramp section in an autonomous environment, this paper first collects videos by UAV. Then the vehicle trajectories are extracted by Yolo and Tracker. An algorithm is supposed to identify the key point of merging behavior. Next, this paper applies the framework of game theory to the autonomous environment, uses bi-level programming to minimize deviation and find the pure strategy Nash equilibrium solution. Using TTC to test the safety of the model, the results indicate that this framework can effectively choose the best action of freeway on-ramp merging and yielding situations while achieving more effective merging operation.
关键词
Keywords: connected-automated vehicle; vehicle trajectory; migration learning; game theory; bi-level programming
报告人
eihan Chen W
Southeast University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询