Applying an XGBoost and SHAP for Congestion Analysis of Expressway Exit Based on Aggressive Driving Behavior
编号:114 访问权限:仅限参会人 更新:2022-07-06 16:05:16 浏览:174次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Identifying the mechanisms by which aggressive behavior and road conditions affect congestion is essential for operational efficiency improvement. To address the frequent congestion in the exit area of expressways, this paper proposed an interpretable machine learning based approach to congestion causation analysis. The congestion index provided by the navigation software is used to identify the congestion status of the road. The XGBoost model is used to construct a congestion model, and the SHAP is used to analyze the impact of various influencing factors on the occurrence of congestion. The results show that the XGBoost can accurately identify the congestion of expressway exits with an precision of 82.5%, a recall of 82.1%, and an F1-score of 82%; the sharp acceleration and sharp deceleration behaviors are important influencing factors leading to congestion, and more sharp deceleration and sharp acceleration aggravate the induced occurrence of congestion.
关键词
Traffic congestion;Machine Learning;XGBoost;SHAP;Expressway exits;Aggressive driving behavior
报告人
QI Hang
Beijing University Of Technology

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    07月08日

    2022

    07月11日

    2022

  • 07月11日 2022

    报告提交截止日期

  • 07月11日 2022

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Central South University (CSU)
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询