443 / 2022-03-15 22:07:03
Research on online partial discharge recognition methods based on multi-sensor fusion
online monitoring,multi-sensor fusion,type recognition,Partial discharge
全文被拒
Mian Tang / Army Engineering University of PLA
Qing Wang / South-to-North Water Diversion Middle Route Information Technology Co., Ltd.,
Cun Xie / Army Engineering University of PLA
Xuwei Yang / Wuhan University;Xiang Yang Da An Automobile Test Center Co., Ltd.,
In order to monitor and recognize the types of partial discharge (PD) in cable joints, this paper builds an experimental platform for simulating PD in cable joints and proposes a monitoring scheme with the fusion of ultrasonic sensor (US) and high-frequency current transformer (HFCT). For both types of data, firstly, wavelet transform is used for denoising; then empirical mode decomposition (EMD) is used to obtain feature values; finally, convolutional neural network (CNN) is used for type recognition. In addition, online monitoring software for PD is also developed based on the above methods. The results show that the multi-sensor fusion method has a high accuracy of more than 95\% for monitoring discharges and more than 90\% for recognizing discharge types. Compared with single-sensor detection, the accuracy of the fusion method can be improved by more than 10\%. These studies and results can provide support to ensure the safe operation of power cables.
重要日期
  • 会议日期

    09月25日

    2022

    09月29日

    2022

  • 08月15日 2022

    提前注册日期

  • 09月10日 2022

    报告提交截止日期

  • 11月10日 2022

    注册截止日期

  • 11月30日 2022

    初稿截稿日期

  • 11月30日 2022

    终稿截稿日期

主办单位
IEEE DEIS
承办单位
Chongqing University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询