180 / 2022-03-14 16:44:02
Open circuit fault diagnosis method based on ARTIFICIAL intelligence algorithm MMC sub-module
modular multilevel converter,fault diagnosis,open circuit,artificial intelligence algorithm
摘要录用
feng zhao / State Grid Shaoxing Power Supply Company,Shaoxing China
Mincheng Yao / Jiangnan University
Hong-yu NI / State Grid Shaoxing Power Supply Company,Shaoxing China
YuTing Gu / Jiangnan University
Yan Wenxu / Jiangnan University
A fault detection method is proposed, which does not need to collect fault samples and only trains the classification model according to normal samples. The open circuit fault of MMC sub module will cause the distortion of fault bridge arm current and abnormal charge and discharge of capacitor of fault sub module. This subject plans to use the bridge arm current as the fault parameter.The self-organizing mapping neural network belongs to unsupervised learning, supports online learning and visualization, trains the normal value of bridge arm current, calculates the distance between bridge arm eigenvalue and threshold for fault detection. After the fault arm is diagnosed, the capacitance voltage slope of the sub module is used as the fault parameter. We regard fault location as a classification problem. The capacitance voltage change rate of the fault sub module can be regarded as an abnormal value when the fault characteristics appear. Because the outliers are outliers far away from all normal values, the outliers are regarded as one class and the normal values as one class. The detection of outliers is realized only by calculating the distance, so as to realize the positioning of fault sub modules.

 
重要日期
  • 会议日期

    09月25日

    2022

    09月29日

    2022

  • 08月15日 2022

    提前注册日期

  • 09月10日 2022

    报告提交截止日期

  • 11月10日 2022

    注册截止日期

  • 11月30日 2022

    初稿截稿日期

  • 11月30日 2022

    终稿截稿日期

主办单位
IEEE DEIS
承办单位
Chongqing University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询