Analysis of Bus passenger flow forecasting with a hybrid method
编号:97 访问权限:仅限参会人 更新:2021-12-03 10:13:51 浏览:133次 张贴报告

报告开始:2021年12月17日 08:44(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
The high-precision bus passenger flow prediction is the guarantee of high-quality bus service. The aim of this study is to improve bus passenger flow prediction by comparing and combining different techniques. This study takes Guangzhou bus line 6 as an example to distinguish and analyze characteristics of commuters and non-commuters. Then, several linear and non-linear models are deployed to improve the accuracy of prediction on these two kinds of passenger flow, including ANNS, LSTM and ARIMA model. The prediction result shows that ANNs and LSTM models are separately suitable for predicting commuting flow and non-commuting flow. Based on the prediction performance, this study proposes a hybrid prediction method that combines the ANNs and LSTM model. Several indexes show that the hybrid method is capable of grasping the characteristics of sample passenger flow and can improve the prediction performance in practice.
关键词
CICTP
报告人
Hao Chen
Southeast University

稿件作者
Hao Chen Southeast University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询