Target Detection of Surface of the Water in Radar Images Based on Improved SSD Network
编号:92 访问权限:仅限参会人 更新:2021-12-03 10:13:45 浏览:127次 张贴报告

报告开始:2021年12月17日 08:40(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

暂无文件

摘要
Aiming at the problem of low target detection rate and high false alarm rate caused by clutter, noise and device jitter in traditional radar image detection, an improved SSD radar image surface target detection network model TF-SSD is proposed, which is based on multi-scale feature fusion. On this basis, deconvolution network and element sum feature fusion method are introduced to make full use of fusion information between shallow feature map and each feature layer. It not only makes up for the weakness of SSD network which is not robust enough to small targets in radar image, but also reduces network parameters. Experimental results on pre-labeled radar image data sets show that TF-SSD radar target detection network improves 6.2% in comparison with the traditional SSD300 network on mAP and 1.62 in comparison with SSD512 network on FPS, which improves the efficiency of target detection under the condition of ensuring the accuracy of radar image target detection.
关键词
CICTP
报告人
shuang shi
School of Information Engineering,Chang'an University

稿件作者
shuang shi School of Information Engineering,Chang'an University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询